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Machine Learning: Intro

The goals of Machine Learning are:

1 to discover mathematical relationships in the world, and

2 to make predictions for the future,

based upon data.

Figure: (From left to right) Graph of the internet, Google’s self-driving car, and
handwriting recognition software.
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Machine Learning: Intro

Given i.i.d. data xi ∈ Rp, i = 1, . . . , n, there are two general classes of
machine learning problems:

Supervised Learning
I We have data labels yi ∈ R, i = 1, . . . , n.
I Task: Find the function f : Rp → R which predicts the label value yi

based on the feature vector xi , i.e: f (xi ) ≈ yi .
I Typically, we find f by solving some minimization problem:

min
f∈F

n∑
i=1

`(yi − f (xi )).

I Examples: Linear regression, LASSO, logistic regression, CART,
random forest, SVM, neural networks

Unsupervised Learning
I We have unlabelled data.
I Task: Find patterns and relationships present in the data.
I Examples: k-means, hierarchical clustering, anomaly detection

methods
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Linear Regression

We wish to find a linear function of the features xi which best
approximates the label yi .

Predict Function: f (x) = β0 + β1x1 + . . .+ βpxp

In Ordinary Least Squares, we minimize the sum-of-squared error:

min
β

n∑
i=1

(yi − βTxi )
2.

We can measure how well a linear model explains the data using its
R2 value, which ranges from 0 (no fit) to 1 (perfect linear fit).

I R2 indicates the % variation in y that is explained by variation in x.
I Beware of overfitting!

Major issue: Just because a model performs well on the data set
used for training does not necessarily mean that it is an accurate
model in general.
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Model Selection

In general, models that are too complex (i.e. linear regressions with
too many variables) are prone to overfitting.

However, models that are too simple (i.e. linear regressions with too
few variables) will give poor predictions on both the training and
testing data sets.

There is a “sweet spot” in the middle, where a model is neither too
complex nor too simple.

Regularization is a popular method for tuning model complexity.
I We add a penalty term to the objective function of the ML method

with constant coefficient λ.
I By varying λ, we can vary the complexity of the ML method.
I In Ridge Regression, we add the regularization term +λ‖β‖2.
I In LASSO, we add the regularization term +λ‖β‖1.
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Bias-Variance Tradeoff

*From The Elements of Statistical Learning (2001)
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Selecting the Model Parameters

How do we determine the correct values for the model parameters?
I For example, how do we select λ in LASSO?

We follow a systematic procedure called cross-validation to select
model parameters. Steps:

1 Split the data into three groups: training, validation, and testing.
2 For each unique combination of model parameters, build a separate ML

model on the training data set.
3 Evaluate the performance of each ML model on the validation set.
4 Select the combination of model parameters which yields the best

performance on the validation set. Use this set of parameters used to
build the final model.

5 Evaluate the performance of the final model on the testing set.
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Logistic Regression

Similar to linear regression, but used for binary classification.
(e.g. predict whether or not a passenger on Titanic survived)

Uses the logistic function to predict the probability of a class
P(y = 1):

g(t) =
1

1 + e−t
.

I The output of the function g : R→ (0, 1] can be thought of as a
probability.

Predict function: f (x) = 1
1+e−(β0+β1x1+...+βpxp)

We then use a threshold value on the output of the logistic
regression.

I Often this value is 0.5, indicating that we predict the class with higher
probability.

I Sometimes, other threshold values may be more appropriate.
(Can you think of any scenarios where this might be the case?)
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Logistic Regression

To find the coefficients β, we solve the Maximum Likelikehood
Estimation problem:

max
β
−

n∑
i=1

log
(

1 + e−yi (β
T xi+β0)

)
.

In addition, to avoid overfitting, we add a regularization term to the
objective.

I L1-regularized logistic regression: −λ‖β‖1.
I L2-regularized logistic regression: −λ‖β‖2.

As in LASSO and ridge regression, we use cross-validation to select
the regularization parameter λ.
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CART

Classification And Regression Trees is a heuristic method for
constructing decision trees.

I Classification Trees are used to predict binary or multi-class outcomes.
I Regression Trees are used to predict continuous outcomes, although

these tend to have poor performance.

Predict function: A decision tree, such as:

Figure: Decision tree obtained from running CART on the iris data set

Machine learning methods for Optimal Decision Trees is an active
research area (see recent works by Bertsimas and Dunn).

Clark Pixton, Colin Pawlowski (MIT ORC) Machine Learning 13 / 38



How does CART work?

The algorithm makes sequential splits on the features.
I For example: Did the Airbnb have ≥ 4 bedrooms? If yes, then consider

price, if no, then consider # of bathrooms, and so on.

Splits are made to make the “buckets” as “pure” as possible, in a
greedy fashion.
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Figure: CART applied to the iris data set
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CART in action
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CART in action
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How does CART choose the splits?

The algorithm begins with a single root node which contains all of the
data points.

Each iteration, the algorithm checks all of the possible splits and
selects the one that minimizes the overall Gini index, which for each
node is:

1−
m∑
j=1

P2
j ,

where m is the total number of different classes, and Pj is the relative
frequency of class j in the given node.

We use the Gini index instead of a more natural measure, such as
percentage of misclassifications in each node, because CART is a
greedy algorithm and the trees turn out better if we use this
complicated measure.
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CART Model Parameters

CART has many input parameters, including:
I minsplit: The minimum number of data points that a node must

have in order to be considered for a split.
I minbucket: The minimum number of data points in each leaf node.
I cp: The threshold complexity parameter which the algorithm uses to

determine whether or not to split at each node. This indirectly controls
the depth of the tree.

If these thresholds are absent, then the CART algorithm will continue
splitting until all points are correctly classified.

I This results in an extremely deep tree which is completely overfit to the
training data.

Select appropriate values for CART model parameters to avoid
overfitting or stopping the splitting procedure too early.

I Use cross-validation for this step.
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k-means Clustering

The goal of k-means is to find clusters of data points which are
relatively close to one another.

We define “closeness” using a distance metric in the feature space, in
this case the L2 distance metric.

If we use the L1 distance metric, then we obtain k-median clustering.

k-means is a heuristic to solve the non-convex mixed integer
optimization problem:

min
K∑

k=1

n∑
i=1

zik‖xi − x̄k‖2,

where x̄k is the centroid of the kth cluster, and

zik =

{
1, if xi is in a cluster with centroid x̄k ,

0, otherwise.
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How does the k-means algorithm work?

First, we input the number of clusters K as a model parameter.

The algorithm starts by randomly selecting K of the points to be
centroids.

Each iteration, we assign each point to its closest cluster centroid,
and we recompute each cluster centroid as:

x̄k =

∑n
i=1 zikxi∑n
i=1 zik

.

This is equivalent to applying the Newton-Raphson method to the
original problem, so this method typically converges very fast to a
locally optimal solution.

I In particular, k-means is much faster than hierarchical clustering.

In R, we can set the number of random starts (nstart) and
maximum number of iterations (iter.max).
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k-means in action

Converges on the iris flower data set in 2 iterations.
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How do we find the correct number of clusters?

In Unsupervised Learning, there is no systematic procedure like
cross-validation to do parameter selection. (Why is that?)

For k-means clustering, we can use an “elbow-plot” to get a rough
sense of how many clusters to use.

I We select a value for K that is relatively small, but still has small total
sum-of-squared distances.

I This occurs at the “elbow” in the graph.
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Random Forest

Derived from CART, this is one of the highest performing methods
for classification.
Predict function: A bunch of decision trees averaged together.
To predict the label of a new data point, we count up the predictions
from all of the decision trees and then take the majority vote.

I This is an example of ensemble modeling, which typically increases our
predictive power.

Figure: Sequoia National Park
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How does Random Forest work?

To build the random forest, we create a bunch of decision trees using
CART.

In order to force the trees to be different, we restrict each CART tree
to make splits using a random subset of the features.

In addition, we allow the CART trees to continue splitting until the
accuracy on the training data is almost 100%.

I This results in very deep individual trees, which will be mostly unique.

Because each individual tree is overfit completely, there is no need to
specify the minbucket or cp parameter.

I The main model parameter is ntree, the number of trees in the forest.

Clark Pixton, Colin Pawlowski (MIT ORC) Machine Learning 28 / 38



Individual Tree from Random Forest on iris data set
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Support Vector Machines

For classification problems, SVM optimizes the decision boundary in
the feature space directly.

I For example, in CART, the decision boundary was the set of splits that
slice up the data.

The kernel function determines the shape of the decision boundary.
I If we choose a linear kernel, then the decision boundary will be a single

hyperplane wTx = b in the feature space. (In 2-D, this is just a line)
I If we choose a polynomial or radial basis function kernel, then the

decision boundary can be curved.

Predict function:

f (x) =

{
sign{wTx− b}, for a linear kernel,

sign{
∑n

i=1 αiyiK (xi , x)− b}, for a general kernel K (x1, x2).

The labels are assumed to be binary yi ∈ {−1,+1}.
I SVM may also be extended for multi-class problems, although these

extensions are largely heuristic.
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How does SVM work?

We find the coefficients of the predict function (either (w, b) for a
linear kernel, or (α, b) for a general kernel) by solving the following
optimization problem:

max
α

C
n∑

i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjxi
Txj

s.t. 0 ≤ αi ≤ C i = 1, . . . , n,
n∑

i=1

αiyi = 0.

Because this is a convex, quadratic optimization problem, we have
fast algorithms to find the optimal solution.

I The R package e1071 does this for you.

The only model parameter that we need to input is C , which controls
the model complexity. (also λ if we use the rbf kernel)

I Use cross-validation to select these parameters.
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SVM in action

Iris dataset
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SVM in action

Hard-margin SVM
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SVM in action

Soft-margin SVM
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More Supervised Learning Methods

K -Nearest Neighbors
I Classify data points simply using the K closest points

Linear Discriminant Analysis
I Useful for classification when the groups are well-separated

Boosting methods
I Retrain the model to improve out-of-sample performance; for example,

Additive Logistic Regression
Neural Networks

I https://en.wikipedia.org/wiki/Artificial_neural_network

Figure: (From left to right) k-NN, LDA, 1-layer neural network
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More Unsupervised Learning Methods

Principal Component Analysis
I Reduces the dimension of the feature matrix using matrix algebra and

SVD

Imputation methods
I Fills in missing values; for example, the EM algorithm, k-NN impute

k-modes Clustering
I Clustering for survey data

Figure: (From left to right) PCA, missing data imputation
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Conclusions

There are tons of machine learning methods out there.

R has many useful open-source packages for machine learning.
I Python also has many available in the scikit-learn library

Use cross-validation for model selection!

The Elements of Statistical Learning and The Analytics Edge are
great textbooks on the subject.

This is an active research area, so new ML algorithms are being
developed too.

I Including some by students in the ORC ,
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The End

That’s all folks!

Special thanks to Jerry Kung and Allison O’Hair for previous course
materials, and Phil Chodrow for extensive course feedback.

Please fill out feedback forms!

Any questions? Feel free to email cpixton@mit.edu or
cpawlows@mit.edu
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