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I am a data scientist and applied mathematician with interests in machine learning, network data, and
modeling of social systems. My research program aims to advance scalable, statistically grounded tech-
niques for the study of complex and networked data. My portfolio includes both single-author publications
and collaborations across a range of institutions and disciplines. My work appears in applied mathemat-
ics journals [1, 2], network-science journals [3, 4], and high-impact interdisciplinary journals [5, 6, 7]. My
primary research directions are:

(D1) Models and Algorithms for Network Data Science. Network modeling offers a powerful formal-
ism for studying interconnected systems in many social, biological, and technical domains. I work
at the intersection of theory and computation to develop models and algorithms for network data
science. I am especially interested in problems involving hypergraphs, which model polyadic re-
lationships in networked systems. My work on hypergraphs addresses spectral theory (ongoing
work), random models [3, 4], and clustering algorithms [7]. A key thrust in my work on network
algorithms is the use of principled approximations to enable scalable data analysis in settings where
exact computation may be infeasible [1, 7].

(D2) Inference and Dynamics in Biosocial Systems. One of my longstanding interests is the use of
modeling to inform our understanding of social inequality, inequity, and division. In one vein, I
develop stochastic models for the formation and impact of hierarchies in human and animal soci-
eties ([6] and ongoing work). In another vein, I develop and analyze nonlinear models of opinion
polarization in social networks. Many well-known opinion models possess certain mathematical
pathologies. I like to approach such models by embedding them within well-behaved parameter-
ized families and studying the long-term behavior of the target model via suitable limits ([2] and
ongoing work). In some cases, the parameterized embedding families are of intrinsic interest, dis-
playing rich behaviors beyond those of the original target model.

(D3) Data Science for Justice, Equity and Sustainability. I believe deeply in the potential of computa-
tional tools to illuminate inequities and promote a more just and inclusive world. I both develop
novel techniques for data analysis and directly support equity-focused data-science research. In an
early paper, I developed information-geometric tools for studying spatial division, focusing on eth-
noracial residential segregation in the U.S. [5]. This work has recently grown into a collaboration on
pollution inequality environmental with a multi-institution team of environmental scientists [8]. I
am also currently working with undergraduate collaborators on data-driven projects related to gen-
der representation in mathematical subfields and racial disparities in criminal-sentencing decisions.

Long term, I aim to pursue my work at a primarily-undergraduate institution. Many of the problems that
I study are accessible to undergraduates, and one of my goals is to develop a robust line of undergraduate
research.

D1. MODELS AND ALGORITHMS FOR NETWORK DATA SCIENCE

1.1. Foundations of Hypergraph Clustering. A hypergraph consists of a set of nodes and a set of edges,
each of which is a set containing any number of nodes. Hypergraphs generalize dyadic graphs and provide
a natural modeling framework for systems in which entities interact polyadically in groups of two or more.
Common interaction mechanisms include collaboration, communication, and co-presence.

1.1.1. Spectral Properties and Algorithms. Spectral graph theory is one of the pillars of the mathematical treat-
ment of relational systems. Spectral methods analyze graphs by assigning to them one or more matrices—
such as adjacency or Laplacian matrices—whose eigenvalues and eigenvectors encode information about
graph structure. The extension of spectral methods to hypergraphs poses challenges. Given a fixed hyper-
graph, one approach is to extract from it all pairwise relationships and thereby obtain a dyadic graph. One
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can then extract matrices from this graph. This procedure, however, destroys polyadic structure [4]. When
a hypergraph is uniform—with all edges containing the same number of nodes—one can encode its adja-
cency structure in a symmetric tensor and tensorial spectral methods may be applied [9]. Much polyadic
data, however, is nonuniform, and cannot be represented by a single tensor.

It is, however, possible to obtain a matrix representation of a nonuniform hypergraph that retains polyadic
relationships. The Hashimoto matrix B of a hypergraph [10] is indexed by node–hyperedge pairs, with en-
tries

b(ie),(j f ) =

{
1 , i ∈ e, j ∈ f , i ∈ f \ {j}
0 , otherwise .

That is, b(ie),(j f ) = 1 if edge f can be reached from edge e by traversing node i 6= j. Since no reduction to
a pairwise graph is required, the matrix B maintains polyadic information in edges of differing sizes. The
cost of this representation is size: if k̄ is the mean size of a hyperedge and m the total number of hyperedges,
then B ∈ {0, 1}mk̄×mk̄. Computation on such a matrix can be prohibitive for data sets of even a few hundred
nodes.

In ongoing work, Jamie Haddock (Harvey Mudd), Nicole Eikmeier (Grinnell), and I are addressing this
computational challenge and deploying the Hashimoto matrix for hypergraph clustering tasks. We first
prove a generalization of the celebrated Ihara–Bass theorem [11]. This generalization allows us to charac-
terize the spectrum of B in terms of a smaller matrix that contains only pairwise adjacency information:

Theorem 1 (PSC, JH, NE ’21). Let H be a hypergraph on n nodes with mk edges of size k for each k = 2, 3, . . . , K,
and let B be its Hashimoto matrix. Then:

(1) For each k, if mk > n, then λ = 1− k is an eigenvalue of B with multiplicity mk − n.
(2) If ∑k mk(k− 1) > n, then λ = 1 is an eigenvalue of B with multiplicity ∑k mk(k− 1)− n.
(3) If the conditions in (1) and (2) are both met, then the remaining eigenvalues of B are eigenvalues of the

2n(K− 1)× 2n(K− 1) matrix

B′ =
[

0n(K−1) D− In(K−1)
(IK−1 −K)⊗ In A + (2IK−1 −K)⊗ In

]
,

where A is a block pairwise adjacency matrix; D is a matrix of node degrees; K is a matrix of edge sizes; 0`
and I` are the zero and identity matrices of size ` respectively; and ⊗ is the matrix Kronecker product.

We then consider applications to hypergraph spec-
tral clustering. Generalizing results for graphs [12], we
show that the Jacobian of the belief-propagation algo-
rithm for inference in clustered hypergraphs can be ap-
proximated by a matrix that is composed of weighted
blocks of B. Eigenvectors of this Jacobian with eigen-
values larger than 1 in magnitude contain information
that can be used to cluster nodes. We propose a sim-
ple consensus-clustering algorithm for aggregating this
information, and analytically derive approximate condi-
tions under which it is able to recover cluster information
with positive normalized mutual information (NMI) rel-
ative to planted labels in sparse synthetic hypergraphs.

This phenomenon is illustrated above: for combinations of parameters inside the white ellipse, the algo-
rithm fails to detect the true labels, while outside the ellipse success is possible. In planned work, we aim
to prove concentration results on the spectrum of B under random hypergraph models; such results would
imply probabilistic guarantees for the success of our algorithm on synthetic data.

1.1.2. Scalable Clustering. Even with matrix reductions such as Theorem 1, spectral methods can be limited
by the computational complexity of eigenvalue computations. In recent work that was published in Science
Advances, Nate Veldt (Cornell, Texas A&M), Austin Benson (Cornell), and I introduced a degree-corrected
Poisson hypergraph stochastic blockmodel, a random-hypergraph model with multiple, densely-connected
subsets of nodes [7]. By analyzing the likelihood of this model, we derived a novel objective function that
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generalizes the popular modularity functional for graph clustering [13]. We then proposed an efficient op-
timization heuristic based on the popular Louvain clustering algorithm [14]. In a sequence of experiments,
we demonstrated our algorithm on hypergraph data of up to one million nodes. We also showed that
our model is able to detect planted partitions in hypergraphs even in regimes in which methods based on
pairwise graph representations must necessarily fail due to information-theoretic bounds [15]. By studying
several popular hypergraph data sets, we found that our algorithm generates qualitatively different parti-
tions than graph-based methods. We also found that the clusters returned by our proposed algorithm were
often more interpretable or better aligned with ground-truth data labels.

1.2. Configuration-Model Random Graphs and Generalizations. Null-hypothesis testing is a cornerstone
of frequentist statistics. The null hypothesis is a probability distribution over counterfactual data realiza-
tions that preserves certain structures and randomizes others. In the setting of graph data analysis, configu-
ration models are a popular class of random graph models used as null distributions. The degree of a node is
the number of edges incident to it, and the degree sequence collects the degree of each node in a graph. Con-
figuration models are random graphs that preserve the degree sequence [16]. The analysis and application
of configuration models can pose surprising mathematical and statistical challenges.

1.2.1. Moments of Random Multigraphs. LetMd be the set of multigraphs on n nodes with prescribed degree
sequence d ∈ Zn

+, and let ηd be the uniform distribution onMd. Despite the simplicity of its definition,
properties of ηd can usually be computed only approximately and under sparsity assumptions [17, 18, 19].
The complexity of this distribution has statistical consequences: standard Markov-chain methods for sam-
pling from ηd can be impractically slow for data of even moderate size [20, 21]. In many applications,
however, it is not necessary to draw complete samples from ηd; it instead suffices to estimate certain mo-
ments. In a recent paper [1] in SIAM Journal on Mathematics of Data Science, I showed how to estimate
moments of ηd while bypassing intensive Markov chain sampling.

An especially important object in applications is the expectation Ω = E[W] of the adjacency matrix W of
a multigraph that is distributed according to ηd. By analyzing the dynamics of a Markov-chain sampling
algorithm for this model, I obtained estimates for the entries ωij of Ω. Let X = [I(Wij ≥ 1)ij], with expected
entries χij = E[Xij]. Let β = ∑j χij. For fixed d, the component βi gives the expected number of distinct
neighbors of node i under ηd, and is a function of the degree sequence d. Finally, let u(d) be the Lipschitz
constant of β restricted to the set {d′ : d′ ≥ d} entrywise.

Theorem 2 (PSC ’20). For any pair of nodes i 6= j, it holds that

χij =
βiβ j

‖β‖1
+ u∗(d)ε0 and ωij =

χij

1− χij
+ u∗(d)ε1 ,

where ε0 = O
(
‖β‖∞
‖β‖1

)
and ε1 = O

(√
‖β‖∞
‖β‖1

)
in the limit n→ ∞.

The relationship between ωij and ξij is illustrated at right: grey
dots are estimated from a contact network via Markov-chain sam-
pling, while the black line is the estimate provided by Theorem 2.
In practice, β is not known and must be estimated as a function of
d. Theorem 2 implies that β must approximately solve the following
system of nonlinear equations: for all i,

hi(β) , ∑
j

βiβ j

‖β‖1 − βiβ j
= di .(1)

I proved a qualified uniqueness result on the solution set of (1), and developed a coordinate-wise Newton
method for computing β. In computational experiments, I showed that the solution of (1) improves on a
popular heuristic [13], reducing the relative error in estimating entries of Ω by over an order of magnitude.
I conjecture that it is possible to significantly tighten the bounds on the error terms in Theorem 2, and I
hope to pursue this problem in future work.
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1.2.2. Null Models for Hypergraphs. I have recenly proposed extensions of configuration models to the set-
ting of hypergraphs. In work [4] that was published in the Journal of Complex Networks, I showed how to
define hypergraph configuration models: probability distributions over sets of hypergraphs that fix both
the degree of each node and the size of each hyperedge. I formulated and proved Markov-chain sampling
algorithms for two such models. I then applied these models to several problems involving null-hypothesis
testing in hypergraphs. In follow-up work [3] in Applied Network Science, Andrew Mellor (Oxford) and I de-
fined a configuration model on annotated hypergraphs in which different nodes can play distinct roles within
edges. For example, scientific publications can have leading and senior authors, each of whom may have
contributed in different ways to the collaboration. We formulated and proved a Markov-chain sampling al-
gorithm for our model, and applied it to the problem of important agents and detecting densely connected
sets of agents in hypergraph data with annotations.

D2. INFERENCE AND DYNAMICS IN BIOSOCIAL SYSTEMS

2.1. Dynamics of Prestige-Based Hierarchies. Many human and animal societies are structured by en-
during social hierarchies. One mechanism of hierarchy in human societies is prestige. In a prestige-based
hierarchy, the social position of an agent depends primarily on how they are perceived by others. In recent
work [6] that was published in the Proceedings of the National Academy of Sciences, I collaborated with Mari
Kawakatsu (Princeton), Nicole Eikmeier (Grinnell), and Dan Larremore (CU Boulder) to study the mathe-
matical conditions under which prestige-based hierarchies form and persist. The state of our model at time
t is a matrix A(t) ∈ Rn×n

≥0 of nonnegative real numbers, which represent previous interactions between the
n agents. At each discrete time step t, we compute the score vector s(t) = σ (A(t)), where σ : Rn×n → Rn

assigns a real number to each agent based on the current state. Then, each agent i chooses to endorse an-
other agent j with probability γij(t) ∝ euij(s(t)). Here, uij is a utility function uij(s) = β1sj + β2(sj− si)

2. The
first parameter β1 is interpretable as a prestige preference: high β1 indicates that agents strongly prefer to
endorse agents with high scores. The second parameter β2 is interpretable as a proximity preference: high
β2 indicates that agents prefer to endorse other agents with scores that are close to their own. These inter-
actions are collected into a matrix ∆(t), and the system state is updated as A(t + 1) = λA(t) + (1− λ)∆(t) ,
where λ ∈ [0, 1] is a timescale parameter.
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When β1 is large, prestige-based hierarchies emerge. For
three distinct score functions σ, we prove the existence and
derive the location of a bifurcation in the parameter β1 in the
limit of long system memory. At this bifurcation, the egali-
tarian regime in which agents have equal scores becomes lin-
early unstable, and a persistent hierarchy emerges. We also
observe the presence of multistable regimes, in which steady
states with qualitatively different degrees of hierarchical orga-
nization are possible. These phenomena are illustrated at right
for the SpringRank score function [22]. Blue points give simu-
lation results, black curves are stable equilibria of a determin-
istic approximation, and grey curves are unstable equilibria.
The critical point at βc

1 = 2 is highlighted.
A distinctive feature of our model is that it possesses a computationally tractable likelihood, allowing us

to fit it to real data in principled fashion. We do this for four data sets from human and animal societies,
finding interpretable similarities between them. In all cases, we estimate that β1 > 0 (indicating prestige
preference) and β2 < 0 (indicating proximity preference). We furthermore find that each system lies in a
multistable regime near the bifurcation point. In this regime, both weakly or strongly hierarchical long-
term outcomes are possible. This finding suggests the intriguing possibility of interventions that might
move complex, prestige-based systems from more hierarchical states to less hierarchical ones.

This work was highlighted in a PNAS commentary [23] and will appear soon as an invited post on the
SIAM News blog.

2.2. Animal Hierarchies from Heterogeneous Behavior. Inference of dominance hierarchies in animal so-
cieties poses methodological challenges. Animal-behavior data is often collected manually, with researchers
logging many different types of behavior. These different kinds of behavior carry different information
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about latent hierarchical structure [24]. In ongoing work, Kelly Finn (Dartmouth), Mason Porter (UCLA),
and I propose a novel generative model of heterogeneous dominance interactions between individuals. Our
model has parameters that regulate how strongly each type of interaction follows the direction of a latent
hierarchy. Both these parameters and the hierarchical ranks themselves can be inferred from data. We plan
to develop statistically grounded treatments of several methodological problems in the inference of animal
hierarchies. These include the determination of when different interaction types should be aggregated dur-
ing data collection, power analyses for informing data collection requirements, and systematic accounting
for biases that arise from common observational methodologies.

2.3. New Methods for Opinion-Dynamics Models. In recent work [2] in SIAM Journal on Applied Mathe-
matics, Peter Mucha (UNC Chapel Hill, Dartmouth) and I studied a nonlinear model of opinion fragmen-
tation in social networks. In this model, agents possess a binary opinion and a network of social contacts.
When an agent disagrees with a contact, they may either (with probability α ∈ [0, 1]) update their opinion
to match that of their contact or (with probability 1 − α) sever communication and connect with a new
contact uniformly at random. Though simple, this model possesses rich behavior, including a critical point
α∗. If α > α∗, the network remains connected and a consensus is reached with high probability. If α < α∗,
however, the system fragments into disconnected components within which opinions are homogeneous.
By adding random opinion switches to this model, we developed novel approximations for higher-order
moments of this system. Considering the limit as the switch-rate goes to 0, we provided state-of-the-art
estimates of both α∗ and the system behavior past this critical point.

The Hegselmann–Krause (HK) model [25] is a popular model of opinion dynamics with bounded confi-
dence. An agent i with opinion xi who encounters an agent j with opinion xj will incorporate j’s opinion
into their own if and only if

∣∣xi − xj
∣∣ < c for some constant c. The all-or-nothing nature of this decision

rule limits the use of standard linearization techniques to study the model. In ongoing work, Heather Zinn
Brooks (Harvey Mudd), Mason Porter (UCLA) and I are studying a parameterized family of smooth mod-
els in which both the the HK model and the DeGroot consensus model [26] appear as limiting cases. We
focus on a model variant with “zealot” or “media” nodes [27] whose opinions do not change. For several
classes of graphs, we analytically characterize the regimes of stability for unpolarized solutions. Outside
these regimes, there exist stable stationary states in which agents separate into strongly polarized factions
and are able to exchange information only with neighbors within their own faction. An important theme
of this work is the role of graph topology in governing the stability of opinion configurations.

D3. DATA SCIENCE FOR JUSTICE, EQUITY AND SUSTAINABILITY

3.1. Information geometry and spatial segregation. In a single-author paper [5] in the Proceedings of the
National Academy of Sciences, I developed a set of information-geometric tools for studying spatial segre-
gation. I proved that a wide range of extant measures of segregation from the sociology literature can
be unified under the formalism of Bregman information measures. I also proved a theorem that relates
a localized version of the Bregman information to
the mean curvature of an information manifold.
This manifold is embedded in the space of discrete
probability distributions, parameterized by spa-
tial coordinates, and endowed with a Riemannian
metric induced by a Bregman divergence. I used
this correspondence to measure local scales of spa-
tial segregation, as shown at right for the city of
Detroit: larger values of the mean local informa-
tion j(x) correspond to more locally-segregated
regions of the city. I also developed algorithms for
hierarchical visualization of segregation in cities.
Recently, I joined a team of collaborators in envi-
ronmental science led by Angelique Demetillo (UVA) and Sally Pusede (UVA) to use this methodology
to study racial disparities in air pollution in major U.S. cities [8]. Interest in these techniques appears to
be growing in the spatial data-science community, and I look forward to more such collaborations in the
future.
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3.2. Equity-Oriented Data Science. Are some mathematical subfields more gender-diverse than others?
In ongoing work, Ben Brill (UCLA, undergraduate mentee), Mason Porter (UCLA), Heather Zinn Brooks
(Harvey Mudd), and I are studying this question using data from the Mathematics Genealogy Project.
Through data analysis, we also plan to learn how subfields vary in their proportions of gender-minoritized
mathematicians. We plan to use stochastic models on networks to study the mechanisms by which subfields
succeed or fail in diversifying over time.

In a recent class project, my student Hinal Jajal (UCLA, undergraduate mentee) scraped sentencing
records from the Virginia state court system. She obtained a complete set of over 2 million distinct sen-
tences. This Fall, she and I will collaborate to analyze this data set. We are particularly interested in whether
these data exhibit systematic racial disparities in sentences and whether these disparities are correlated with
particular courts or judges. Long-term, we hope to publish a scholarly article and white paper on racial dis-
parities in state-level criminal sentencing in collaboration with a team at the Institute for the Quantitative
Study of Inclusion, Diversity, and Equity (QSIDE).

MENTORSHIP OF UNDERGRADUATE RESEARCH

My research interests are well-suited to collaboration with undergraduates. Many of the problems that I
study have a relatively low technical barrier to entry. Students who have taken courses in modeling, proba-
bility, or dynamical systems are well-placed to make significant research contributions that are publishable
in computer science, mathematics, physics, and interdisciplinary venues.

(D1) There are rich research opportunities for students who are interested in modeling random networks
and developing algorithms to study them. One especially fertile area is the analysis of hypergraphs
and other “higher-order” data structures [28]. Important open problems include the further devel-
opment of spectral theory and random walks on non-uniform hypergraphs, information-theoretic
thresholds for statistical algorithms, and generative modeling of polyadic systems. In many cases,
progress in these areas may depend more on creative thinking than on a high degree of technical
sophistication. Students can contribute either theory or data-driven research, depending on their
interests.

(D2) There are many opportunities for undergraduates to contribute in the mathematical modeling of
social and biological systems. Models of both hierarchy formation and opinion dynamics can be
pursued from either analytical or computational perspectives, and they can lead to engagement
with empirical data. In both cases, these models can be extended in a variety of directions, de-
pending on student interest. Such extensions include change points in parameters, more complex
specifications of agent behaviors, and more structured spaces of possible agent states. It is often
relatively straightforward to observe the influence of a given modeling decision on macroscopic
system behavior, making this a convenient area for students to rapidly test their ideas. Theoretically
inclined students may then to seek approximations to the observed behavior, while computation-
ally inclined students may pursue large-scale computational experiments or develop algorithms for
learning model parameters from available data.

(D3) Equity-oriented data science is an exciting and accessible area, with new challenges and data sets
emerging regularly. While some of these data sets can be understood using out-of-the-box inference
algorithms, others may require the development of custom mathematical and statistical machinery.
As described above, I am already working with two undergraduate mentees on such projects. There
are numerous opportunities for students to combine interests in computational science and social
good, thereby producing interesting, impactful research.

These interests lend themselves well to interdisciplinary collaborations, which I anticipate will closely in-
volve my undergraduate research mentees.

I was given several opportunities as an undergraduate to develop my research interests. I am eager to
pay it forward.
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